Homepage > Man Pages > Category > Subroutines
Homepage > Man Pages > Name > L

LAPACK-3

man page of LAPACK-3

LAPACK-3: applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian

NAME

LAPACK-3 - applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices,

SYNOPSIS

SUBROUTINE ZLAR2V( N, X, Y, Z, INCX, C, S, INCC ) INTEGER INCC, INCX, N DOUBLE PRECISION C( * ) COMPLEX*16 S( * ), X( * ), Y( * ), Z( * )
PURPOSE
ZLAR2V applies a vector of complex plane rotations with real cosines from both sides to a sequence of 2-by-2 complex Hermitian matrices, defined by the elements of the vectors x, y and z. For i = 1,2,...,n ( x(i) z(i) ) := ( conjg(z(i)) y(i) ) ( c(i) conjg(s(i)) ) ( x(i) z(i) ) ( c(i) -conjg(s(i)) ) ( -s(i) c(i) ) ( conjg(z(i)) y(i) ) ( s(i) c(i) )
ARGUMENTS
N (input) INTEGER The number of plane rotations to be applied. X (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector x; the elements of x are assumed to be real. Y (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector y; the elements of y are assumed to be real. Z (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX) The vector z. INCX (input) INTEGER The increment between elements of X, Y and Z. INCX > 0. C (input) DOUBLE PRECISION array, dimension (1+(N-1)*INCC) The cosines of the plane rotations. S (input) COMPLEX*16 array, dimension (1+(N-1)*INCC) The sines of the plane rotations. INCC (input) INTEGER The increment between elements of C and S. INCC > 0. LAPACK auxiliary routine (versionMarch 2011 LAPACK-3(3)
 
 
 

Copyright © 2011–2018 by topics-of-interest.com . All rights reserved. Hosted by all-inkl.
Contact · Imprint · Privacy

Page generated in 26.86ms.

holzspalter.name | tier-bedarf.com | doomsdaydude.com