Homepage > Man Pages > Category > Subroutines
Homepage > Man Pages > Name > L

LAPACK-3

man page of LAPACK-3

LAPACK-3: ZLA_GERCOND_C compute the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector

NAME

LAPACK-3 - ZLA_GERCOND_C compute the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector
SYNOPSIS
DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK ) IMPLICIT NONE CHARACTER TRANS LOGICAL CAPPLY INTEGER N, LDA, LDAF, INFO INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * ) DOUBLE PRECISION C( * ), RWORK( * )
PURPOSE
ZLA_GERCOND_C computes the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

ARGUMENTS

TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate Transpose = Transpose) N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) COMPLEX*16 array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by ZGETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from the factorization A = P*L*U as computed by ZGETRF; row i of the matrix was interchanged with row IPIV(i). C (input) DOUBLE PRECISION array, dimension (N) The vector C in the formula op(A) * inv(diag(C)). CAPPLY (input) LOGICAL If .TRUE. then access the vector C in the formula above. INFO (output) INTEGER = 0: Successful exit. i > 0: The ith argument is invalid. WORK (input) COMPLEX*16 array, dimension (2*N). Workspace. RWORK (input) DOUBLE PRECISION array, dimension (N). Workspace. LAPACK routine (version 3.2.1)March 2011 LAPACK-3(3)
 
 
 

Copyright © 2011–2018 by topics-of-interest.com . All rights reserved. Hosted by all-inkl.
Contact · Imprint · Privacy

Page generated in 23.63ms.

Ermitteln Sie Ihre IP-Adresse schnell und einfach | adsenseexperts.com | uhren.name