Homepage > Man Pages > Category > Subroutines

Homepage > Man Pages > Name > Z# zher

## man page of zher

### zher: perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A,

Homepage > Man Pages > Name > Z

## NAME

ZHER- perform the hermitian rank 1 operation A := alpha*x*conjg( x' ) + A,## SYNOPSIS

SUBROUTINE ZHER ( UPLO, N, ALPHA, X, INCX, A, LDA ) DOUBLE PRECISION ALPHA INTEGER INCX, LDA, N CHARACTER*1 UPLO COMPLEX*16 A( LDA, * ), X( * )## PURPOSE

ZHER performs the hermitian rank 1 operation where alpha is a real scalar, x is an n element vector and A is an n by n hermitian matrix.## PARAMETERS

UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - COMPLEX*16 array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. A - COMPLEX*16 array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero, and on exit they are set to zero. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. ZHER(3)

Copyright © 2011–2018 by topics-of-interest.com . All rights reserved. Hosted by all-inkl.

Contact · Imprint · Privacy

Page generated in 22.60ms.

und-verkauft.de | adsenseexperts.com | autoresponder.name