Homepage > Man Pages > Category > General Commands

Homepage > Man Pages > Name > V# v.vol.rst

## man page of v.vol.rst

### v.vol.rst: Interpolates point data to a G3D grid volume using regularized spline with tension (RST) algorithm.

Homepage > Man Pages > Name > V

## NAME

v.vol.rst- Interpolates point data to a G3D grid volume using regularized spline with tension (RST) algorithm.## KEYWORDS

vectorSYNOPSIS

v.vol.rst v.vol.rst help v.vol.rst[-c]input=string[cellinp=string] [wcolumn=string] [tension=float] [smooth=float] [scolumn=string] [where=sql_query] [devi=string] [cvdev=string] [maskmap=string] [segmax=integer] [npmin=integer] [npmax=integer] [dmin=float] [wmult=float] [zmult=float] [cellout=string] [elev=string] [gradient=string] [aspect1=string] [aspect2=string] [ncurv=string] [gcurv=string] [mcurv=string] [--overwrite] [--verbose] [--quiet]Flags: -cPerform a cross-validation procedure without volume interpolation--overwriteAllow output files to overwrite existing files--verboseVerbose module output--quietQuiet module outputParameters: input=stringName of the vector map with input x,y,z,wcellinp=stringName of the surface raster map for cross-sectionwcolumn=stringName of the column containing w attribute to interpolate Default:flt1 tension=floatTension parameter Default:40. smooth=floatSmoothing parameter Default:0.1 scolumn=stringName of the column with smoothing parameterswhere=sql_queryWHERE conditions of SQL statement without 'where' keyword Example: income = 10000devi=stringOutput deviations vector point filecvdev=stringOutput cross-validation vector mapmaskmap=stringName of the raster map used as masksegmax=integerMaximum number of points in a segment Default:50 npmin=integerMinimum number of points for approximation in a segment (>segmax) Default:200 npmax=integerMaximum number of points for approximation in a segment (>npmin) Default:700 dmin=floatMinimum distance between points (to remove almost identical points) Default:0.500000 wmult=floatConversion factor for w-values used for interpolation Default:1.0 zmult=floatConversion factor for z-values Default:1.0 cellout=stringOutput cross-section raster mapelev=stringOutput elevation g3d-filegradient=stringOutput gradient magnitude g3d-fileaspect1=stringOutput gradient horizontal angle g3d-fileaspect2=stringOutput gradient vertical angle g3d-filencurv=stringOutput change of gradient g3d-filegcurv=stringOutput gaussian curvature g3d-filemcurv=stringOutput mean curvature g3d-file## DESCRIPTION

v.vol.rstinterpolates values to a 3-dimensional raster map from 3-dimensional point data (e.g. temperature, rainfall data from climatic stations, concentrations from drill holes etc.) given in a 3-D vector point file namedinput. The size of the output 3d raster mapelevis given by the current 3D region. Sometimes, the user may want to get a 2-D map showing a modelled phenomenon at a crossection surface. In that case,cellinpandcelloutoptions must be specified, with the output 2D raster mapcelloutcontaining the crossection of the interpolated volume with a surface defined bycellinp2D raster map. As an option, simultaneously with interpolation, geometric parameters of the interpolated phenomenon can be computed (magnitude of gradient, direction of gradient defined by horizontal and vertical angles), change of gradient, Gauss-Kronecker curvature, or mean curvature). These geometric parameteres are saved as 3d raster mapsgradient, aspect1, aspect2, ncurv, gcurv, mcurv, respectively. At first, data points are checked for identical positions and points that are closer to each other than givendminare removed. Parameterswmultandzmultallow the user to re-scale the w-values and z- coordinates of the point data (useful e.g. for transformation of elevations given in feet to meters, so that the proper values of gradient and curvatures can be computed). Rescaling of z-coordinates (zmult) is also needed when the distances in vertical direction are much smaller than the horizontal distances; if that is the case, the value ofzmultshould be selected so that the vertical and horizontal distances have about the same magnitude. Regularized spline with tension method is used in the interpolation. Thetensionparameter controls the distance over which each given point influences the resulting volume (with very high tension, each point influences only its close neighborhood and the volume goes rapidly to trend between the points). Higher values of tension parameter reduce the overshoots that can appear in volumes with rapid change of gradient. For noisy data, it is possible to define a global smoothing parameter,smooth. With the smoothing parameter set to zero (smooth=0) the resulting volume passes exactly through the data points. When smoothing is used, it is possible to output a vector mapdevicontaining deviations of the resulting volume from the given data. The user can define a 2D raster map namedmaskmap, which will be used as a mask. The interpolation is skipped for 3-dimensional cells whose 2-dimensional projection has a zero value in the mask. Zero values will be assigned to these cells in all output 3d raster maps. If the number of given points is greater than 700, segmented processing is used. The region is split into 3-dimensional "box" segments, each having less thansegmaxpoints and interpolation is performed on each segment of the region. To ensure the smooth connection of segments, the interpolation function for each segment is computed using the points in the given segment and the points in its neighborhood. The minimum number of points taken for interpolation is controlled bynpmin, the value of which must be larger thansegmaxand less than 700. This limit of 700 was selected to ensure the numerical stability and efficiency of the algorithm.## EXAMPLES

Spearfish example (we simulate 3D soil range data): g.region -dp # define volume g.region res=50 tbres=50 b=0 t=1500 -ap3 # random elevation extraction (2D) r.random elevation.10m vector_output=elevrand n=200 # conversion to 3D v.db.addcol elevrand col="x double precision, y double precision" v.to.db elevrand option=coor col=x,y v.db.select elevrand # create new 3D map v.in.db elevrand out=elevrand_3d x=x y=y z=value key=cat v.info -c elevrand_3d v.info -t elevrand_3d # remove the now superfluous 'x', 'y' and 'value' (z) columns v.db.dropcol elevrand_3d col=x v.db.dropcol elevrand_3d col=y v.db.dropcol elevrand_3d col=value # add attribute to interpolate # (Soil range types taken from the USDA Soil Survey) d.rast soils.range d.vect elevrand_3d v.db.addcol elevrand_3d col="soilrange integer" v.what.rast elevrand_3d col=soilrange rast=soils.range # fix 0 (no data in raster map) to NULL: v.db.update elevrand_3d col=soilrange value=NULL where="soilrange=0" v.db.select elevrand_3d # interpolate volume v.vol.rst elevrand_3d wcol=soilrange elev=soilrange zmult=100 # visualize nviz elevation.10m vol=soilrange # export to Paraview r.out.vtk elevation.10m out=elev.vtk r3.out.vtk elevrand_3d out=volume.vtk paraviewSQL supportUsing thewhereparameter, the interpolation can be limited to use only a subset of the input vectors. # preparation as in above example v.vol.rst elevrand_3d wcol=soilrange elev=soilrange zmult=100 where="soilrange > 3"Cross validation procedureSometimes it can be difficult to figure out the proper values of interpolation parameters. In this case, the user can use a crossvalidation procedure using-cflag (a.k.a. "jack-knife" method) to find optimal parameters for given data. In this method, every point in the input point file is temporarily excluded from the computation and interpolation error for this point location is computed. During this procedure no output grid files can be simultanuously computed. The procedure for larger datasets may take a very long time, so it might be worth to use just a sample data representing the whole dataset.Example (based on Slovakia3d dataset):v.info -c precip3d v.vol.rst -c input=precip3d wcolumn=precip zmult=50 segmax=700 cvdev=cvdevmap tension=10 v.db.select cvdevmap v.univar cvdevmap col=flt1 type=point Based on these results, the parameters will have to be optimized. It is recommended to plot the CV error as curve while modifying the parameters. The best approach is to start withtension,smoothandzmultwith rough steps, or to setzmultto a constant somewhere between 30-60. This helps to find minimal RMSE values while then finer steps can be used in all parameters. The reasonable range istension=10...100,smooth=0.1...1.0,zmult=10...100. Inv.vol.rstthe tension parameter is much more sensitive to changes than inv.surf.rst, therefore the user should always check the result by visual inspection. Minimizing CV does not always provide the best result, especially when the density of data are insufficient. Then the optimal result found by CV is an oversmoothed surface.## NOTES

The vector points map must be a 3D vector map (x, y, z as geometry). The module v.in.db can be used to generate a 3D vector map from a table containing x,y,z columns. Also, the input data should be in a projected coodinate system, such as Univeral Transverse Mercator. The module does not appear to have support for geographic (Lat/Long) coordinates as of May 2009.v.vol.rstuses regularized spline with tension for interpolation from point data (as described in Mitasova and Mitas, 1993). The implementation has an improved segmentation procedure based on Oct- trees which enhances the efficiency for large data sets. Geometric parameters - magnitude of gradient (gradient), horizontal (aspect1) and vertical (aspect2)aspects, change of gradient (ncurv), Gauss-Kronecker (gcurv) and mean curvatures (mcurv) are computed directly from the interpolation function so that the important relationships between these parameters are preserved. More information on these parameters can be found in Mitasova et al., 1995 or Thorpe, 1979. The program gives warning when significant overshoots appear and higher tension should be used. However, with tension too high the resulting volume will have local maximum in each given point and everywhere else the volume goes rapidly to trend. With a smoothing parameter greater than zero, the volume will not pass through the data points and the higher the parameter the closer the volume will be to the trend. For theory on smoothing with splines see Talmi and Gilat, 1977 or Wahba, 1990. If a visible connection of segments appears, the program should be rerun with highernpminto get more points from the neighborhood of given segment. If the number of points in a vector map is less than 400,segmaxshould be set to 400 so that segmentation is not performed when it is not necessary. The program gives a warning when the user wants to interpolate outside the "box" given by minimum and maximum coordinates in the input vector map. To remedy this, zoom into the area encompassing the input vector data points. For large data sets (thousands of data points), it is suggested to zoom into a smaller representative area and test whether the parameters chosen (e.g. defaults) are appropriate. The user must rung.regionbefore the program to set the 3D region for interpolation.## BUGS

devifile is written as 2D and deviations are not written as attributes.## REFERENCES

Hofierka J., Parajka J., Mitasova H., Mitas L., 2002, Multivariate Interpolation of Precipitation Using Regularized Spline with Tension. Transactions in GIS 6, pp. 135-150. Mitas, L., Mitasova, H., 1999, Spatial Interpolation. In: P.Longley, M.F. Goodchild, D.J. Maguire, D.W.Rhind (Eds.), Geographical Information Systems: Principles, Techniques, Management and Applications, Wiley, pp.481-492 Mitas L., Brown W. M., Mitasova H., 1997, <a href="//skagit.meas.ncsu.edu/%7Ehelena/gmslab/lcgfin/cg- mitas.html">Role of dynamic cartography in simulations of landscape processes based on multi-variate fields. Computers and Geosciences, Vol. 23, No. 4, pp. 437-446 (includes CDROM and WWW: www.elsevier.nl/locate/cgvis) Mitasova H., Mitas L., Brown W.M., D.P. Gerdes, I. Kosinovsky, Baker, T.1995, Modeling spatially and temporally distributed phenomena: New methods and tools for GRASS GIS. International Journal of GIS, 9 (4), special issue on Integrating GIS and Environmental modeling, 433-446. Mitasova, H., Mitas, L., Brown, B., Kosinovsky, I., Baker, T., Gerdes, D. (1994): <a href="//skagit.meas.ncsu.edu/%7Ehelena/gmslab/viz/ches.html">Multidimensional interpolation and visualization in GRASS GIS <a href="//skagit.meas.ncsu.edu/%7Ehelena/gmslab/papers/lmg.rev1.ps">Mitasova H. and Mitas L. 1993: Interpolation by Regularized Spline with Tension: I. Theory and Implementation,Mathematical Geology25, 641-655. <a href="//skagit.meas.ncsu.edu/%7Ehelena/gmslab/papers/hmg.rev1.ps">Mitasova H. and Hofierka J. 1993: Interpolation by Regularized Spline with Tension: II. Application to Terrain Modeling and Surface Geometry Analysis,Mathematical Geology25, 657-667. Mitasova, H., 1992 : New capabilities for interpolation and topographic analysis in GRASS, GRASSclippings 6, No.2 (summer), p.13. Wahba, G., 1990 : Spline Models for Observational Data, CNMS-NSF Regional Conference series in applied mathematics, 59, SIAM, Philadelphia, Pennsylvania. Mitas, L., Mitasova H., 1988 : General variational approach to the interpolation problem, Computers and Mathematics with Applications 16, p. 983 Talmi, A. and Gilat, G., 1977 : Method for Smooth Approximation of Data, Journal of Computational Physics, 23, p.93-123. Thorpe, J. A. (1979): Elementary Topics in Differential Geometry. Springer-Verlag, New York, pp. 6-94.SEE ALSO

g.region, v.in.ascii, r3.mask, v.in.db, v.surf.rst, v.univar## AUTHOR

Original version of program (in FORTRAN) and GRASS enhancements: Lubos Mitas, NCSA, University of Illinois at Urbana-Champaign, Illinois, USA, since 2000 at Department of Physics, North Carolina State University, Raleigh, USA lubos_mitas@ncsu.edu Helena Mitasova, Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, USA, <a href="mailto:hmitaso@unity.ncsu.edu">hmitaso@unity.ncsu.edu Modified program (translated to C, adapted for GRASS, new segmentation procedure): Irina Kosinovsky, US Army CERL, Champaign, Illinois, USA Dave Gerdes, US Army CERL, Champaign, Illinois, USA Modifications for g3d library, geometric parameters, cross-validation, deviations: Jaro Hofierka, Department of Geography and Regional Development, University of Presov, Presov, Slovakia, <a href="MAILTO:hofierka@fhpv.unipo.sk">hofierka@fhpv.unipo.sk, <a href="//www.geomodel.sk">//www.geomodel.sk Last changed: $Date: 2009-05-12 20:30:26 +0200 (Tue, 12 May 2009) $ Full index (C) 2003-2010 GRASS Development Team V.VOL.RST(1)

Copyright © 2011–2018 by topics-of-interest.com . All rights reserved. Hosted by all-inkl.

Contact · Imprint · Privacy

Page generated in 17.79ms.

generiere.de | und-verkauft.de | information-information.de